Dendrite development regulated by CREST, a calcium-regulated transcriptional activator.
نویسندگان
چکیده
The lasting effects of neuronal activity on brain development involve calcium-dependent gene expression. Using a strategy called transactivator trap, we cloned a calcium-responsive transactivator called CREST (for calcium-responsive transactivator). CREST is a SYT-related nuclear protein that interacts with adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB)-binding protein (CBP) and is expressed in the developing brain. Mice that have a targeted disruption of the crest gene are viable but display defects in cortical and hippocampal dendrite development. Cortical neurons from crest mutant mice are compromised in calcium-dependent dendritic growth. Thus, calcium activation of CREST-mediated transcription helps regulate neuronal morphogenesis.
منابع مشابه
Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development.
Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-depende...
متن کاملA Calcium-Dependent Switch in a CREST-BRG1 Complex Regulates Activity-Dependent Gene Expression
CREST plays a critical role in activity-dependent development, but its mechanism of action is not well understood. Here, we show that a CREST-BRG1 complex regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. In resting neurons, transcription of the c-fos promoter is inhibited by BRG1-dependent recruitment of...
متن کاملLiprinalpha1 degradation by calcium/calmodulin-dependent protein kinase II regulates LAR receptor tyrosine phosphatase distribution and dendrite development.
Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMK...
متن کاملDynamic regulation of spine-dendrite coupling in cultured hippocampal neurons.
We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the pare...
متن کاملAn activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP.
Activity-regulated gene expression is believed to play a key role in the development and refinement of neuronal circuitry. Nevertheless, the transcriptional networks that regulate synapse growth and plasticity remain largely uncharacterized. Here, we show that microRNA 132 (miR132) is an activity-dependent rapid response gene regulated by the cAMP response element-binding (CREB) protein pathway...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 303 5655 شماره
صفحات -
تاریخ انتشار 2004